553 research outputs found

    Production and characterization of a <sup>222</sup>Rn-emanating stainless steel source

    Get PDF
    Precise radon measurements are a requirement for various applications,ranging from radiation protection over environmental studies to materialscreening campaigns for rare-event searches. All of them ultimately depend onthe availability of calibration sources with a known and stable radon emanationrate. A new approach to produce clean and dry radon sources by implantation of226^{226}Ra ions into stainless steel has been investigated. In a proof ofprinciple study, two stainless steel plates have been implanted incollaboration with the ISOLDE facility located at CERN. We present results froma complete characterization of the sources. Each sample provides a radonemanation rate of about 2 Bq, which has been measured using electrostatic radonmonitors as well as miniaturized proportional counters. Additional measurementsusing HPGe and alpha spectrometry as well as measurements of the radonemanation rate at low temperatures were carried out.<br

    Highly Sensitive Gamma-Spectrometers of GERDA for Material Screening: Part 2

    Full text link
    The previous article about material screening for GERDA points out the importance of strict material screening and selection for radioimpurities as a key to meet the aspired background levels of the GERDA experiment. This is directly done using low-level gamma-spectroscopy. In order to provide sufficient selective power in the mBq/kg range and below, the employed gamma-spectrometers themselves have to meet strict material requirements, and make use of an elaborate shielding system. This article gives an account of the setup of two such spectrometers. Corrado is located in a depth of 15 m w.e. at the MPI-K in Heidelberg (Germany), GeMPI III is situated at the Gran-Sasso underground laboratory at 3500 m w.e. (Italy). The latter one aims at detecting sample activities of the order ~0.01 mBq/kg, which is the current state-of-the-art level. The applied techniques to meet the respective needs are discussed and demonstrated by experimental results.Comment: Featured in: Proceedings of the XIV International Baksan School "Particles and Cosmology" Baksan Valley, Kabardino-Balkaria, Russia, April 16-21,2007. INR RAS, Moscow 2008. ISBN 978-5-94274-055-9, pp. 233-238; (6 pages, 4 figures

    Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors

    Get PDF
    Long-lived radon daughters are a critical background source in experiments searching for low-energy rare events. Originating from radon in ambient air, radioactive polonium, bismuth and lead isotopes plate-out on materials that are later employed in the experiment. In this paper, we examine cleaning procedures for their capability to remove radon daughters from PTFE surfaces, a material often used in liquid xenon TPCs. We found a large difference between the removal efficiency obtained for the decay chains of 222^{222}Rn and 220^{220}Rn, respectively. This indicates that the plate-out mechanism has an effect on the cleaning success. While the long-lived 222^{222}Rn daughters could be reduced by a factor of ~2, the removal of 220^{220}Rn daughters was up to 10 times more efficient depending on the treatment. Furthermore, the impact of a nitric acid based PTFE cleaning on the liquid xenon purity is investigated in a small-scale liquid xenon TPC

    Highly sensitive gamma-spectrometers of GERDA for material screening: Part I

    Full text link
    The GERDA experiment aims to search for the neutrinoless double beta-decay of 76Ge and possibly for other rare processes. The sensitivity of the first phase is envisioned to be more than one order of magnitude better than in previous neutrinoless double beta-decay experiments. This implies that materials with ultra-low radioactive contamination need to be used for the construction of the detector and its shielding. Therefore the requirements on material screening include high-sensitivity low-background detection techniques and long measurement times. In this article, an overview of material-screening laboratories available to the GERDA collaboration is given, with emphasis on the gamma-spectrometry. Additionally, results of an intercomparison of the evaluation accuracy in these laboratories are presented.Comment: Featured in: Proceedings of the XIV International Baksan School "Particles and Cosmology" Baksan Valley, Kabardino-Balkaria, Russia, April 16-21,2007. INR RAS, Moscow 2008. ISBN 978-5-94274-055-9, pp. 228-232; (5 pages, 0 figures

    Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay

    Full text link
    We perform a statistical analysis with the prospective results of future experiments on neutrino-less double beta decay, direct searches for neutrino mass (KATRIN) and cosmological observations. Realistic errors are used and the nuclear matrix element uncertainty for neutrino-less double beta decay is also taken into account. Three benchmark scenarios are introduced, corresponding to quasi-degenerate, inverse hierarchical neutrinos, and an intermediate case. We investigate to what extend these scenarios can be reconstructed. Furthermore, we check the compatibility of the scenarios with the claimed evidence of neutrino-less double beta decay.Comment: Matches published version: Europhys.Lett.85:51002 (2009). Format changed suitably for ArXi

    A New 76Ge Double Beta Decay Experiment at LNGS

    Full text link
    This Letter of Intent has been submitted to the Scientific Committee of the INFN Laboratori Nazionali del Gran Sasso (LNGS) in March 2004. It describes a novel facility at the LNGS to study the double beta decay of 76Ge using an (optionally active) cryogenic fluid shield. The setup will allow to scrutinize with high significance on a short time scale the current evidence for neutrinoless double beta decay of 76Ge using the existing 76Ge diodes from the previous Heidelberg-Moscow and IGEX experiments. An increase in the lifetime limit can be achieved by adding more enriched detectors, remaining thereby background-free up to a few 100 kg-years of exposure.Comment: 67 pages, 19 eps figures, 17 tables, gzipped tar fil

    Dark Matter Results from 100 Live Days of XENON100 Data

    Full text link
    We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal region with an expected background of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90% confidence level.Comment: 5 pages, 5 figures; matches accepted versio

    Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data

    Full text link
    The XENON100 experiment has recently completed a dark matter run with 100.9 live-days of data, taken from January to June 2010. Events in a 48kg fiducial volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A total of three events have been found in the predefined signal region, compatible with the background prediction of (1.8 \pm 0.6) events. Based on this analysis we present limits on the WIMP-nucleon cross section for inelastic dark matter. With the present data we are able to rule out the explanation for the observed DAMA/LIBRA modulation as being due to inelastic dark matter scattering off iodine at a 90% confidence level.Comment: 3 pages, 3 figure

    Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"

    Full text link
    In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that XENON100's upper limits on spin-independent WIMP-nucleon cross sections for WIMP masses below 10 GeV "may be understated by one order of magnitude or more". Having performed a similar, though more detailed analysis prior to the submission of our new result (arXiv:1207.5988), we do not confirm these findings. We point out the rationale for not considering the described effect in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure

    New results on solar neutrino fluxes from 192 days of Borexino data

    Full text link
    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos
    corecore